Bayesian Smoothing and Regression Splines for Measurement Error Problems
نویسندگان
چکیده
In the presence of covariate measurement error, estimating a regression function nonparametrically is extremely dif cult, the problem being related to deconvolution. Various frequentist approaches exist for this problem, but to date there has been no Bayesian treatment. In this article we describe Bayesian approaches to modeling a exible regression function when the predictor variable is measured with error. The regression function is modeled with smoothing splines and regression P-splines. Two methods are described for exploration of the posterior. The rst, called the iterative conditional modes ( ICM), is only partially Bayesian. ICM uses a componentwise maximization routine to nd the mode of the posterior. It also serves to create starting values for the second method, which is fully Bayesian and uses Markov chain Monte Carlo (MCMC) techniques to generate observations from the joint posterior distribution. Use of the MCMC approach has the advantage that interval estimates that directly model and adjust for the measurement error are easily calculated. We provide simulations with several nonlinear regression functions and provide an illustrative example. Our simulations indicate that the frequentist mean squared error properties of the fully Bayesian method are better than those of ICM and also of previously proposed frequentist methods, at least in the examples that we have studied.
منابع مشابه
Spatially Adaptive Bayesian Regression Splines
In this paper we study penalized regression splines (P-splines), which are low–order basis function splines with a penalty to avoid undersmoothing. Such P–splines are typically not spatially adaptive, and hence can have trouble when functions are varying rapidly. While frequentist methods are available to address this issue, no Bayesian techniques have been developed. Our approach is to model t...
متن کاملSpatially Adaptive Bayesian Penalized Regression Splines (P-splines)
In this paper we study penalized regression splines (P-splines), which are low–order basis splines with a penalty to avoid undersmoothing. Such P–splines are typically not spatially adaptive, and hence can have trouble when functions are varying rapidly. Our approach is to model the penalty parameter inherent in the P–spline method as a heteroscedastic regression function. We develop a full Bay...
متن کاملInterpretation of Bayesian " Confidence " Intervals for Smootidng Splines
A frequency interpretation of Bayesian "confidence" intervals for smoothing splines. Abstract The frequency properties of Wahba's Bayesian "confidence" intervals for smoothing splines are investigated by a large sample approximation and by a simulation study. When the coverage probabilities for these pointwise confidence intervals is averaged across the observation points, we explain why the av...
متن کاملOn Semiparametric Regression with O'sullivan Penalized Splines
An exposition on the use of O’Sullivan penalized splines in contemporary semiparametric regression, including mixed model and Bayesian formulations, is presented. O’Sullivan penalized splines are similar to P-splines, but have the advantage of being a direct generalization of smoothing splines. Exact expressions for the O’Sullivan penalty matrix are obtained. Comparisons between the two types o...
متن کاملSpatially Adaptive Bayesian Penalized Splines With Heteroscedastic Errors
Penalized splines have become an increasingly popular tool for nonparametric smoothing because of their use of low-rank spline bases, which makes computations tractable while maintaining accuracy as good as smoothing splines. This article extends penalized spline methodology by both modeling the variance function nonparametrically and using a spatially adaptive smoothing parameter. This combina...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000